Draw lines through an array with a timer

hi, I’m writing a code for a project. At the moment my program can get lines out of a video image and display them. All the lines are displayed at once. Now I want every line to be displayed separately. So every 10 or 20 seconds a new line is displayed. At the end of the loop all lines are displayed and the image is complete. I should probably work with a for loop within the arrays but I can’t get I right. Can someone help me? Here is my current code. Thanks a lot!

FIRST TAB:

import processing.video.*;
import java.awt.image.BufferedImage;
import java.util.Arrays;

Capture video;
int seg;
CannyEdgeDetector detector;
PImage inputImage, edgesImage;
ArrayList<ArrayList<PVector>> lines;
ArrayList<ArrayList<PVector>> finalLines;
boolean result = false;

// Dimensions of the input video.
int videoWidth = 320;
int videoHeight = 240;

int divider = 1;
PImage test;

void setup() {
  frameRate(30);
  size(320, 240);
  video = new Capture(this, videoWidth, videoHeight);
  video.start();

  seg = 1;
  background(255); // white background
  noFill(); // shapes will have no fill
  stroke(0); // stroke color set as black
  //smooth(); // set anti-aliasing
  detector = new CannyEdgeDetector();

  detector.setLowThreshold(0.1f);
  detector.setHighThreshold(2.0f);
}

void draw() {
  background(240);

  if (video.available()) {
    video.read();
  }

  inputImage = video;
  fastblur(inputImage,mouseY/8);
  detector.setSourceImage((java.awt.image.BufferedImage)inputImage.getImage());
  detector.process();
  edgesImage = new PImage(detector.getEdgesImage());

  lines = findLines(edgesImage);
  fill(0);
  text(lines.size(),10,10);

  noFill();
  if (result==false) {
    stroke(0);
    if (lines.size()>1) {
      for (int i = 0; i < lines.size(); i++) {
        ArrayList<PVector> line = lines.get(i);
        beginShape();
        for (int j = 0; j < line.size(); j++) {
          PVector punt = line.get(j);
          vertex(punt.x, punt.y);
        }
        endShape();
      }
    }
  } else {
    stroke(0, 255, 0);noFill();
    for (int i = 0; i <finalLines.size(); i++) {
      ArrayList<PVector> line = finalLines.get(i);
      beginShape();
      for (int j = 0; j < line.size(); j+=5) {
        PVector punt = line.get(j);
        vertex(punt.x, punt.y);
        //ellipse(punt.x,punt.y, 10,10);
      }
      endShape();
    }
  }
}
///*
void keyPressed() {
  if (key == ' ') {
    finalLines = lines;
    result = true;
  }
}
//*/
ArrayList<ArrayList<PVector>> findLines(PImage edges) {
  ArrayList<ArrayList<PVector>> lines = new ArrayList<ArrayList<PVector>>();
  for (int y = 0; y < edgesImage.height-1; y+=seg) {
    for (int x = 0; x < edgesImage.width-1; x+=seg) {
      ArrayList<PVector> line = findLine(edgesImage, x, y);
      if (line != null) {
        lines.add(line);
      }
    }
  }
  return lines;
}

// Find the line and return an arraylist of points.
ArrayList<PVector> findLine(PImage edges, int startX, int startY) {
  color c = edges.get(startX, startY);
  if (c == #ffffff) {
    ArrayList<PVector> line = new ArrayList<PVector>();
    line.add(new PVector(startX, startY));
    edges.set(startX, startY, #000000);
    int x = startX;
    int y = startY;
    while (true) {
      PVector p = nextPoint(edges, x, y);
      if (p == null) break;
      line.add(p);
      edges.set((int)p.x, (int) p.y, #000000);
      x = (int) p.x;
      y = (int) p.y;
    }
    return line;
  } else {
    return null;
  }
}

// Find the next point, or null if no point could be found.
PVector nextPoint(PImage edges, int x, int y) {
  for (int dx = -seg; dx <= seg; dx++) {
    for (int dy = -seg; dy <= seg; dy++) {
      color c = edges.get(x + dx, y + dy);
      if (c == #ffffff) {
        return new PVector(x + dx, y + dy);
      }
    }
  }
  return null;
}


void fastblur(PImage img,int radius){

  if (radius<1){
    return;
  }
  int w=img.width;
  int h=img.height;
  int wm=w-1;
  int hm=h-1;
  int wh=w*h;
  int div=radius+radius+1;
  int r[]=new int[wh];
  int g[]=new int[wh];
  int b[]=new int[wh];
  int rsum,gsum,bsum,x,y,i,p,p1,p2,yp,yi,yw;
  int vmin[] = new int[max(w,h)];
  int vmax[] = new int[max(w,h)];
  int[] pix=img.pixels;
  int dv[]=new int[256*div];
  for (i=0;i<256*div;i++){
     dv[i]=(i/div); 
  }
  
  yw=yi=0;
 
  for (y=0;y<h;y++){
    rsum=gsum=bsum=0;
    for(i=-radius;i<=radius;i++){
      p=pix[yi+min(wm,max(i,0))];
      rsum+=(p & 0xff0000)>>16;
      gsum+=(p & 0x00ff00)>>8;
      bsum+= p & 0x0000ff;
   }
    for (x=0;x<w;x++){
    
      r[yi]=dv[rsum];
      g[yi]=dv[gsum];
      b[yi]=dv[bsum];

      if(y==0){
        vmin[x]=min(x+radius+1,wm);
        vmax[x]=max(x-radius,0);
       } 
       p1=pix[yw+vmin[x]];
       p2=pix[yw+vmax[x]];

      rsum+=((p1 & 0xff0000)-(p2 & 0xff0000))>>16;
      gsum+=((p1 & 0x00ff00)-(p2 & 0x00ff00))>>8;
      bsum+= (p1 & 0x0000ff)-(p2 & 0x0000ff);
      yi++;
    }
    yw+=w;
  }
  
  for (x=0;x<w;x++){
    rsum=gsum=bsum=0;
    yp=-radius*w;
    for(i=-radius;i<=radius;i++){
      yi=max(0,yp)+x;
      rsum+=r[yi];
      gsum+=g[yi];
      bsum+=b[yi];
      yp+=w;
    }
    yi=x;
    for (y=0;y<h;y++){
      pix[yi]=0xff000000 | (dv[rsum]<<16) | (dv[gsum]<<8) | dv[bsum];
      if(x==0){
        vmin[y]=min(y+radius+1,hm)*w;
        vmax[y]=max(y-radius,0)*w;
      } 
      p1=x+vmin[y];
      p2=x+vmax[y];

      rsum+=r[p1]-r[p2];
      gsum+=g[p1]-g[p2];
      bsum+=b[p1]-b[p2];

      yi+=w;
    }
  }

}

SECOND TAB:

public class CannyEdgeDetector {

    // statics

    private final static float GAUSSIAN_CUT_OFF = 0.005f;
    private final static float MAGNITUDE_SCALE = 100F;
    private final static float MAGNITUDE_LIMIT = 1000F;
    private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);

    // fields

    private int height;
    private int width;
    private int picsize;
    private int[] data;
    private int[] magnitude;
    private BufferedImage sourceImage;
    private BufferedImage edgesImage;

    private float gaussianKernelRadius;
    private float lowThreshold;
    private float highThreshold;
    private int gaussianKernelWidth;
    private boolean contrastNormalized;

    private float[] xConv;
    private float[] yConv;
    private float[] xGradient;
    private float[] yGradient;

    // constructors

    /**
     * Constructs a new detector with default parameters.
     */

    public CannyEdgeDetector() {
        lowThreshold = 0.15f;
        highThreshold = 0.5f;
        gaussianKernelRadius = 2f;
        gaussianKernelWidth = 16;
        contrastNormalized = false;
    }



    public BufferedImage getSourceImage() {
        return sourceImage;
    }


    public void setSourceImage(BufferedImage image) {
        sourceImage = image;
    }


    public BufferedImage getEdgesImage() {
        return edgesImage;
    }


    public void setEdgesImage(BufferedImage edgesImage) {
        this.edgesImage = edgesImage;
    }


    public float getLowThreshold() {
        return lowThreshold;
    }


    public void setLowThreshold(float threshold) {
        if (threshold < 0) throw new IllegalArgumentException();
        lowThreshold = threshold;
    }

    public float getHighThreshold() {
        return highThreshold;
    }


    public void setHighThreshold(float threshold) {
        if (threshold < 0) throw new IllegalArgumentException();
        highThreshold = threshold;
    }

    public int getGaussianKernelWidth() {
        return gaussianKernelWidth;
    }

    public void setGaussianKernelWidth(int gaussianKernelWidth) {
        if (gaussianKernelWidth < 2) throw new IllegalArgumentException();
        this.gaussianKernelWidth = gaussianKernelWidth;
    }

    public float getGaussianKernelRadius() {
        return gaussianKernelRadius;
    }

    public void setGaussianKernelRadius(float gaussianKernelRadius) {
        if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException();
        this.gaussianKernelRadius = gaussianKernelRadius;
    }

    public boolean isContrastNormalized() {
        return contrastNormalized;
    }

    public void setContrastNormalized(boolean contrastNormalized) {
        this.contrastNormalized = contrastNormalized;
    }

    // methods

    public void process() {
        width = sourceImage.getWidth();
        height = sourceImage.getHeight();
        picsize = width * height;
        initArrays();
        readLuminance();
        if (contrastNormalized) normalizeContrast();
        computeGradients(gaussianKernelRadius, gaussianKernelWidth);
        int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
        int high = Math.round( highThreshold * MAGNITUDE_SCALE);
        performHysteresis(low, high);
        thresholdEdges();
        writeEdges(data);
    }

    // private utility methods

    private void initArrays() {
        if (data == null || picsize != data.length) {
            data = new int[picsize];
            magnitude = new int[picsize];

            xConv = new float[picsize];
            yConv = new float[picsize];
            xGradient = new float[picsize];
            yGradient = new float[picsize];
        }
    }
    private void computeGradients(float kernelRadius, int kernelWidth) {

        //generate the gaussian convolution masks
        float kernel[] = new float[kernelWidth];
        float diffKernel[] = new float[kernelWidth];
        int kwidth;
        for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
            float g1 = gaussian(kwidth, kernelRadius);
            if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
            float g2 = gaussian(kwidth - 0.5f, kernelRadius);
            float g3 = gaussian(kwidth + 0.5f, kernelRadius);
            kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
            diffKernel[kwidth] = g3 - g2;
        }

        int initX = kwidth - 1;
        int maxX = width - (kwidth - 1);
        int initY = width * (kwidth - 1);
        int maxY = width * (height - (kwidth - 1));

        //perform convolution in x and y directions
        for (int x = initX; x < maxX; x++) {
            for (int y = initY; y < maxY; y += width) {
                int index = x + y;
                float sumX = data[index] * kernel[0];
                float sumY = sumX;
                int xOffset = 1;
                int yOffset = width;
                for(; xOffset < kwidth ;) {
                    sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
                    sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
                    yOffset += width;
                    xOffset++;
                }

                yConv[index] = sumY;
                xConv[index] = sumX;
            }

        }

        for (int x = initX; x < maxX; x++) {
            for (int y = initY; y < maxY; y += width) {
                float sum = 0f;
                int index = x + y;
                for (int i = 1; i < kwidth; i++)
                    sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);

                xGradient[index] = sum;
            }

        }

        for (int x = kwidth; x < width - kwidth; x++) {
            for (int y = initY; y < maxY; y += width) {
                float sum = 0.0f;
                int index = x + y;
                int yOffset = width;
                for (int i = 1; i < kwidth; i++) {
                    sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
                    yOffset += width;
                }

                yGradient[index] = sum;
            }

        }

        initX = kwidth;
        maxX = width - kwidth;
        initY = width * kwidth;
        maxY = width * (height - kwidth);
        for (int x = initX; x < maxX; x++) {
            for (int y = initY; y < maxY; y += width) {
                int index = x + y;
                int indexN = index - width;
                int indexS = index + width;
                int indexW = index - 1;
                int indexE = index + 1;
                int indexNW = indexN - 1;
                int indexNE = indexN + 1;
                int indexSW = indexS - 1;
                int indexSE = indexS + 1;

                float xGrad = xGradient[index];
                float yGrad = yGradient[index];
                float gradMag = hypot(xGrad, yGrad);

                //perform non-maximal supression
                float nMag = hypot(xGradient[indexN], yGradient[indexN]);
                float sMag = hypot(xGradient[indexS], yGradient[indexS]);
                float wMag = hypot(xGradient[indexW], yGradient[indexW]);
                float eMag = hypot(xGradient[indexE], yGradient[indexE]);
                float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
                float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
                float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
                float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
                float tmp;

                if (xGrad * yGrad <= (float) 0 /*(1)*/
                    ? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
                        ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
                            && tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
                        : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
                            && tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
                    : Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
                        ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
                            && tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
                        : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
                            && tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
                    ) {
                    magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
                    //NOTE: The orientation of the edge is not employed by this
                    //implementation. It is a simple matter to compute it at
                    //this point as: Math.atan2(yGrad, xGrad);
                } else {
                    magnitude[index] = 0;
                }
            }
        }
    }

    private float hypot(float x, float y) {
        return (float) Math.hypot(x, y);
    }

    private float gaussian(float x, float sigma) {
        return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
    }

    private void performHysteresis(int low, int high) {

        Arrays.fill(data, 0);

        int offset = 0;
        for (int y = 0; y < height; y++) {
            for (int x = 0; x < width; x++) {
                if (data[offset] == 0 && magnitude[offset] >= high) {
                    follow(x, y, offset, low);
                }
                offset++;
            }
        }
    }

    private void follow(int x1, int y1, int i1, int threshold) {
        int x0 = x1 == 0 ? x1 : x1 - 1;
        int x2 = x1 == width - 1 ? x1 : x1 + 1;
        int y0 = y1 == 0 ? y1 : y1 - 1;
        int y2 = y1 == height -1 ? y1 : y1 + 1;

        data[i1] = magnitude[i1];
        for (int x = x0; x <= x2; x++) {
            for (int y = y0; y <= y2; y++) {
                int i2 = x + y * width;
                if ((y != y1 || x != x1)
                    && data[i2] == 0 
                    && magnitude[i2] >= threshold) {
                    follow(x, y, i2, threshold);
                    return;
                }
            }
        }
    }

    private void thresholdEdges() {
        for (int i = 0; i < picsize; i++) {
            data[i] = data[i] > 0 ? -1 : 0xff000000;
        }
    }

    private int luminance(float r, float g, float b) {
        return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
    }

    private void readLuminance() {
        int type = sourceImage.getType();
        if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
            int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
            for (int i = 0; i < picsize; i++) {
                int p = pixels[i];
                int r = (p & 0xff0000) >> 16;
                int g = (p & 0xff00) >> 8;
                int b = p & 0xff;
                data[i] = luminance(r, g, b);
            }
        } else if (type == BufferedImage.TYPE_BYTE_GRAY) {
            byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
            for (int i = 0; i < picsize; i++) {
                data[i] = (pixels[i] & 0xff);
            }
        } else if (type == BufferedImage.TYPE_USHORT_GRAY) {
            short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
            for (int i = 0; i < picsize; i++) {
                data[i] = (pixels[i] & 0xffff) / 256;
            }
        } else if (type == BufferedImage.TYPE_3BYTE_BGR) {
            byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
            int offset = 0;
            for (int i = 0; i < picsize; i++) {
                int b = pixels[offset++] & 0xff;
                int g = pixels[offset++] & 0xff;
                int r = pixels[offset++] & 0xff;
                data[i] = luminance(r, g, b);
            }
        } else {
            throw new IllegalArgumentException("Unsupported image type: " + type);
        }
    }

    private void normalizeContrast() {
        int[] histogram = new int[256];
        for (int i = 0; i < data.length; i++) {
            histogram[data[i]]++;
        }
        int[] remap = new int[256];
        int sum = 0;
        int j = 0;
        for (int i = 0; i < histogram.length; i++) {
            sum += histogram[i];
            int target = sum*255/picsize;
            for (int k = j+1; k <=target; k++) {
                remap[k] = i;
            }
            j = target;
        }

        for (int i = 0; i < data.length; i++) {
            data[i] = remap[data[i]];
        }
    }

    private void writeEdges(int pixels[]) {
        if (edgesImage == null) {
            edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
        }
        edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);
    }

}

Hello,

Welcome to the Processing forum.

The Processing website has references, examples, tutorials, books, etc.

YouTube has The Coding Train and numerous other related videos.

There may be something in the Processing examples to inspire you:

You can use frameCount() or millis() for timing.

If you would like a timing example ask; I wrote a quick simple one with frameRate() and millis() to work my brain. It is still working.

:slight_smile:

2 Likes