@solub, @tabreturn @villares thanks for some kind help from @hx2A I’m making progress with numpy and image processing in py5. Recently there has been some discussion about the quality of different noise implementations, this a sketch after an example by @hx2A that explores UniformNoise (java), vnoise (python) and OpenSimplex2 (java).
import py5
import numpy as np
from PIL import Image
import noise
import vnoise
OpenSimplex2S = py5.JClass('monkstone.noise.OpenSimplex2S')
UniformNoise = py5.JClass('micycle.uniformnoise.UniformNoise')
w, h = 1200, 800
vector_noise = vnoise.Noise()
xgrid, ygrid = np.meshgrid(np.linspace(0, 12 // 3, num=w // 3, dtype=np.float32), np.linspace(0, 12, num=h, dtype=np.float32))
noise_array = np.full((h, w // 3, 3), 255, dtype=np.uint8)
noise_array2 = noise_array.copy()
noise_array3 = noise_array.copy()
def setup():
py5.size(w, h)
global open_simplex, uniform_noise
open_simplex = OpenSimplex2S(py5.millis())
uniform_noise = UniformNoise()
def draw():
# UniformNoise by micycle
noise_array[:, :, 0] = 255 * (np.vectorize(uniform_noise.uniformNoise)(xgrid, ygrid, py5.frame_count * 0.01, 4, 0.5))
py5.image(Image.fromarray(noise_array, mode='HSV').convert('RGB'), 0, 0)
# vnoise library
noise_array2[:, :, 0] = 255 * (vector_noise.noise3(ygrid, xgrid, py5.frame_count * 0.1, octaves=1, grid_mode=False) + 1) / 2
py5.image(Image.fromarray(noise_array2, mode='HSV').convert('RGB'), 400, 0)
# open simplex
noise_array3[:, :, 0] = 255 * (np.vectorize(open_simplex.noise3_Classic)(ygrid, xgrid, py5.frame_count * 0.1) + 1) / 2
py5.image(Image.fromarray(noise_array3, mode='HSV').convert('RGB'), 800, 0)
py5.run_sketch()
Output:-